2000 character limit reached
On probability-raising causality in Markov decision processes (2201.08768v1)
Published 21 Jan 2022 in cs.LO
Abstract: The purpose of this paper is to introduce a notion of causality in Markov decision processes based on the probability-raising principle and to analyze its algorithmic properties. The latter includes algorithms for checking cause-effect relationships and the existence of probability-raising causes for given effect scenarios. Inspired by concepts of statistical analysis, we study quality measures (recall, coverage ratio and f-score) for causes and develop algorithms for their computation. Finally, the computational complexity for finding optimal causes with respect to these measures is analyzed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.