Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On probability-raising causality in Markov decision processes (2201.08768v1)

Published 21 Jan 2022 in cs.LO

Abstract: The purpose of this paper is to introduce a notion of causality in Markov decision processes based on the probability-raising principle and to analyze its algorithmic properties. The latter includes algorithms for checking cause-effect relationships and the existence of probability-raising causes for given effect scenarios. Inspired by concepts of statistical analysis, we study quality measures (recall, coverage ratio and f-score) for causes and develop algorithms for their computation. Finally, the computational complexity for finding optimal causes with respect to these measures is analyzed.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.