Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Specialized High-Performance Network on Anton 3 (2201.08357v1)

Published 20 Jan 2022 in cs.AR

Abstract: Molecular dynamics (MD) simulation, a computationally intensive method that provides invaluable insights into the behavior of biomolecules, typically requires large-scale parallelization. Implementation of fast parallel MD simulation demands both high bandwidth and low latency for inter-node communication, but in current semiconductor technology, neither of these properties is scaling as quickly as intra-node computational capacity. This disparity in scaling necessitates architectural innovations to maximize the utilization of computational units. For Anton 3, the latest in a family of highly successful special-purpose supercomputers designed for MD simulations, we thus designed and built a completely new specialized network as part of our ASIC. Tightly integrating this network with specialized computation pipelines enables Anton 3 to perform simulations orders of magnitude faster than any general-purpose supercomputer, and to outperform its predecessor, Anton 2 (the state of the art prior to Anton 3), by an order of magnitude. In this paper, we present the three key features of the network that contribute to the high performance of Anton 3. First, through architectural optimizations, the network achieves very low end-to-end inter-node communication latency for fine-grained messages, allowing for better overlap of computation and communication. Second, novel application-specific compression techniques reduce the size of most messages sent between nodes, thereby increasing effective inter-node bandwidth. Lastly, a new hardware synchronization primitive, called a network fence, supports fast fine-grained synchronization tailored to the data flow within a parallel MD application. These application-driven specializations to the network are critical for Anton 3's MD simulation performance advantage over all other machines.

Citations (7)

Summary

We haven't generated a summary for this paper yet.