Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three kinds of novel multi-symplectic methods for stochastic Hamiltonian partial differential equations (2201.08191v1)

Published 20 Jan 2022 in math.NA and cs.NA

Abstract: Stochastic Hamiltonian partial differential equations, which possess the multi-symplectic conservation law, are an important and fairly large class of systems. The multi-symplectic methods inheriting the geometric features of stochastic Hamiltonian partial differential equations provide numerical approximations with better numerical stability, and are of vital significance for obtaining correct numerical results. In this paper, we propose three novel multi-symplectic methods for stochastic Hamiltonian partial differential equations based on the local radial basis function collocation method, the splitting technique, and the partitioned Runge-Kutta method. Concrete numerical methods are presented for nonlinear stochastic wave equations, stochastic nonlinear Schr\"odinger equations, stochastic Korteweg-de Vries equations and stochastic Maxwell equations. We take stochastic wave equations as examples to perform numerical experiments, which indicate the validity of the proposed methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.