Papers
Topics
Authors
Recent
2000 character limit reached

Symplectic Euler scheme for Hamiltonian stochastic differential equations driven by Levy noise

Published 28 Jun 2020 in math.NA and cs.NA | (2006.15500v1)

Abstract: This paper proposes a general symplectic Euler scheme for a class of Hamiltonian stochastic differential equations driven by L$\acute{e}$vy noise in the sense of Marcus form. The convergence of the symplectic Euler scheme for this Hamiltonian stochastic differential equations is investigated. Realizable numerical implementation of this scheme is also provided in details. Numerical experiments are presented to illustrate the effectiveness and superiority of the proposed method by the simulations of its orbits, symplectic structure and Hamlitonian.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.