Papers
Topics
Authors
Recent
Search
2000 character limit reached

Data-driven structure-preserving model reduction for stochastic Hamiltonian systems

Published 31 Jan 2022 in math.NA, cs.NA, math.DG, math.DS, and math.PR | (2201.13391v2)

Abstract: In this work we demonstrate that SVD-based model reduction techniques known for ordinary differential equations, such as the proper orthogonal decomposition, can be extended to stochastic differential equations in order to reduce the computational cost arising from both the high dimension of the considered stochastic system and the large number of independent Monte Carlo runs. We also extend the proper symplectic decomposition method to stochastic Hamiltonian systems, both with and without external forcing, and argue that preserving the underlying symplectic or variational structures results in more accurate and stable solutions that conserve energy better than when the non-geometric approach is used. We validate our proposed techniques with numerical experiments for a semi-discretization of the stochastic nonlinear Schr\"odinger equation and the Kubo oscillator.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.