Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Domain Generalization via Frequency-domain-based Feature Disentanglement and Interaction (2201.08029v2)

Published 20 Jan 2022 in cs.CV

Abstract: Adaptation to out-of-distribution data is a meta-challenge for all statistical learning algorithms that strongly rely on the i.i.d. assumption. It leads to unavoidable labor costs and confidence crises in realistic applications. For that, domain generalization aims at mining domain-irrelevant knowledge from multiple source domains that can generalize to unseen target domains. In this paper, by leveraging the frequency domain of an image, we uniquely work with two key observations: (i) the high-frequency information of an image depicts object edge structure, which preserves high-level semantic information of the object is naturally consistent across different domains, and (ii) the low-frequency component retains object smooth structure, while this information is susceptible to domain shifts. Motivated by the above observations, we introduce (i) an encoder-decoder structure to disentangle high- and low-frequency feature of an image, (ii) an information interaction mechanism to ensure the helpful knowledge from both two parts can cooperate effectively, and (iii) a novel data augmentation technique that works on the frequency domain to encourage the robustness of frequency-wise feature disentangling. The proposed method obtains state-of-the-art performance on three widely used domain generalization benchmarks (Digit-DG, Office-Home, and PACS).

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.