Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptability of Improved NEAT in Variable Environments (2201.07977v2)

Published 22 Oct 2021 in cs.NE and cs.MA

Abstract: A large challenge in AI is training control agents that can properly adapt to variable environments. Environments in which the conditions change can cause issues for agents trying to operate in them. Building algorithms that can train agents to operate in these environments and properly deal with the changing conditions is therefore important. NeuroEvolution of Augmenting Topologies (NEAT) was a novel Genetic Algorithm (GA) when it was created, but has fallen aside with newer GAs outperforming it. This paper furthers the research on this subject by implementing various versions of improved NEAT in a variable environment to determine if NEAT can perform well in these environments. The improvements included, in every combination, are: recurrent connections, automatic feature selection, and increasing population size. The recurrent connections improvement performed extremely well. The automatic feature selection improvement was found to be detrimental to performance, and the increasing population size improvement lowered performance a small amount, but decreased computation requirements noticeably.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Destiny Bailey (1 paper)

Summary

We haven't generated a summary for this paper yet.