Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Efficient Application of Neuroevolution for Competitive Multiagent Learning (2105.10907v1)

Published 23 May 2021 in cs.AI, cs.MA, and cs.NE

Abstract: Multiagent systems provide an ideal environment for the evaluation and analysis of real-world problems using reinforcement learning algorithms. Most traditional approaches to multiagent learning are affected by long training periods as well as high computational complexity. NEAT (NeuroEvolution of Augmenting Topologies) is a popular evolutionary strategy used to obtain the best performing neural network architecture often used to tackle optimization problems in the field of artificial intelligence. This paper utilizes the NEAT algorithm to achieve competitive multiagent learning on a modified pong game environment in an efficient manner. The competing agents abide by different rules while having similar observation space parameters. The proposed algorithm utilizes this property of the environment to define a singular neuroevolutionary procedure that obtains the optimal policy for all the agents. The compiled results indicate that the proposed implementation achieves ideal behaviour in a very short training period when compared to existing multiagent reinforcement learning models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (1)

Summary

We haven't generated a summary for this paper yet.