Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Anomaly Detection in Smart Home by Integrating Event Time Intervals (2201.07954v1)

Published 20 Jan 2022 in cs.CR and cs.NI

Abstract: Smart home IoT systems and devices are susceptible to attacks and malfunctions. As a result, users' concerns about their security and safety issues arise along with the prevalence of smart home deployments. In a smart home, various anomalies (such as fire or flooding) could happen, due to cyber attacks, device malfunctions, or human mistakes. These concerns motivate researchers to propose various anomaly detection approaches. Existing works on smart home anomaly detection focus on checking the sequence of IoT devices' events but leave out the temporal information of events. This limitation prevents them to detect anomalies that cause delay rather than missing/injecting events. To fill this gap, in this paper, we propose a novel anomaly detection method that takes the inter-event intervals into consideration. We propose an innovative metric to quantify the temporal similarity between two event sequences. We design a mechanism to learn the temporal patterns of event sequences of common daily activities. Delay-caused anomalies are detected by comparing the sequence with the learned patterns. We collect device events from a real-world testbed for training and testing. The experiment results show that our proposed method achieves accuracies of 93%, 88%, 89% for three daily activities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.