Papers
Topics
Authors
Recent
2000 character limit reached

Including STDP to eligibility propagation in multi-layer recurrent spiking neural networks

Published 5 Jan 2022 in cs.NE and cs.LG | (2201.07602v1)

Abstract: Spiking neural networks (SNNs) in neuromorphic systems are more energy efficient compared to deep learning-based methods, but there is no clear competitive learning algorithm for training such SNNs. Eligibility propagation (e-prop) offers an efficient and biologically plausible way to train competitive recurrent SNNs in low-power neuromorphic hardware. In this report, previous performance of e-prop on a speech classification task is reproduced, and the effects of including STDP-like behavior are analyzed. Including STDP to the ALIF neuron model improves the classification performance, but this is not the case for the Izhikevich e-prop neuron. Finally, it was found that e-prop implemented in a single-layer recurrent SNN consistently outperforms a multi-layer variant.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.