Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Federated Clustering: A Federated Fuzzy $c$-Means Algorithm (FFCM) (2201.07316v1)

Published 18 Jan 2022 in cs.LG

Abstract: Federated Learning (FL) is a setting where multiple parties with distributed data collaborate in training a joint Machine Learning (ML) model while keeping all data local at the parties. Federated clustering is an area of research within FL that is concerned with grouping together data that is globally similar while keeping all data local. We describe how this area of research can be of interest in itself, or how it helps addressing issues like non-independently-identically-distributed (i.i.d.) data in supervised FL frameworks. The focus of this work, however, is an extension of the federated fuzzy $c$-means algorithm to the FL setting (FFCM) as a contribution towards federated clustering. We propose two methods to calculate global cluster centers and evaluate their behaviour through challenging numerical experiments. We observe that one of the methods is able to identify good global clusters even in challenging scenarios, but also acknowledge that many challenges remain open.

Citations (34)

Summary

We haven't generated a summary for this paper yet.