Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Pretraining for Echocardiography Segmentation with Limited Data (2201.07219v3)

Published 16 Jan 2022 in eess.IV, cs.CV, and cs.LG

Abstract: Contrastive learning has proven useful in many applications where access to labelled data is limited. The lack of annotated data is particularly problematic in medical image segmentation as it is difficult to have clinical experts manually annotate large volumes of data such as cardiac structures in ultrasound images of the heart. In this paper, We propose a self supervised contrastive learning method to segment the left ventricle from echocardiography when limited annotated images exist. Furthermore, we study the effect of contrastive pretraining on two well-known segmentation networks, UNet and DeepLabV3. Our results show that contrastive pretraining helps improve the performance on left ventricle segmentation, particularly when annotated data is scarce. We show how to achieve comparable results to state-of-the-art fully supervised algorithms when we train our models in a self-supervised fashion followed by fine-tuning on just 5\% of the data. We show that our solution outperforms what is currently published on a large public dataset (EchoNet-Dynamic) achieving a Dice score of 0.9252. We also compare the performance of our solution on another smaller dataset (CAMUS) to demonstrate the generalizability of our proposed solution. The code is available at (https://github.com/BioMedIA-MBZUAI/contrastive-echo).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mohamed Saeed (8 papers)
  2. Rand Muhtaseb (3 papers)
  3. Mohammad Yaqub (77 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.