Papers
Topics
Authors
Recent
2000 character limit reached

Low Regret Binary Sampling Method for Efficient Global Optimization of Univariate Functions

Published 18 Jan 2022 in cs.LG, cs.CC, math.OC, and stat.ML | (2201.07164v1)

Abstract: In this work, we propose a computationally efficient algorithm for the problem of global optimization in univariate loss functions. For the performance evaluation, we study the cumulative regret of the algorithm instead of the simple regret between our best query and the optimal value of the objective function. Although our approach has similar regret results with the traditional lower-bounding algorithms such as the Piyavskii-Shubert method for the Lipschitz continuous or Lipschitz smooth functions, it has a major computational cost advantage. In Piyavskii-Shubert method, for certain types of functions, the query points may be hard to determine (as they are solutions to additional optimization problems). However, this issue is circumvented in our binary sampling approach, where the sampling set is predetermined irrespective of the function characteristics. For a search space of $[0,1]$, our approach has at most $L\log (3T)$ and $2.25H$ regret for $L$-Lipschitz continuous and $H$-Lipschitz smooth functions respectively. We also analytically extend our results for a broader class of functions that covers more complex regularity conditions.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.