Papers
Topics
Authors
Recent
2000 character limit reached

Hardware-Efficient Deconvolution-Based GAN for Edge Computing

Published 18 Jan 2022 in cs.LG and eess.IV | (2201.06878v1)

Abstract: Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution. However, its performance comes at a significant cost in terms of computation and memory requirements. In this paper, we proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture capable of achieving higher throughput versus resource utilization trade-off. The developed accelerator is based on an efficient deconvolution engine that offers high parallelism with respect to scaling factors for GAN-based edge computing. Furthermore, various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms. Lastly, an end-to-end open-source framework is provided for training, implementation, state-space exploration, and scaling the inference using Vivado high-level synthesis for Xilinx SoC-FPGAs, and a comparison testbed with Jetson Nano.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.