Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convergence of a robust deep FBSDE method for stochastic control

Published 18 Jan 2022 in math.OC, cs.NA, math.NA, math.PR, and stat.ML | (2201.06854v5)

Abstract: In this paper, we propose a deep learning based numerical scheme for strongly coupled FBSDEs, stemming from stochastic control. It is a modification of the deep BSDE method in which the initial value to the backward equation is not a free parameter, and with a new loss function being the weighted sum of the cost of the control problem, and a variance term which coincides with the mean squared error in the terminal condition. We show by a numerical example that a direct extension of the classical deep BSDE method to FBSDEs, fails for a simple linear-quadratic control problem, and motivate why the new method works. Under regularity and boundedness assumptions on the exact controls of time continuous and time discrete control problems, we provide an error analysis for our method. We show empirically that the method converges for three different problems, one being the one that failed for a direct extension of the deep BSDE method.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.