Papers
Topics
Authors
Recent
Search
2000 character limit reached

ArCovidVac: Analyzing Arabic Tweets About COVID-19 Vaccination

Published 17 Jan 2022 in cs.CL and cs.SI | (2201.06496v1)

Abstract: The emergence of the COVID-19 pandemic and the first global infodemic have changed our lives in many different ways. We relied on social media to get the latest information about the COVID-19 pandemic and at the same time to disseminate information. The content in social media consisted not only health related advises, plans, and informative news from policy makers, but also contains conspiracies and rumors. It became important to identify such information as soon as they are posted to make actionable decisions (e.g., debunking rumors, or taking certain measures for traveling). To address this challenge, we develop and publicly release the first largest manually annotated Arabic tweet dataset, ArCovidVac, for the COVID-19 vaccination campaign, covering many countries in the Arab region. The dataset is enriched with different layers of annotation, including, (i) Informativeness (more vs. less importance of the tweets); (ii) fine-grained tweet content types (e.g., advice, rumors, restriction, authenticate news/information); and (iii) stance towards vaccination (pro-vaccination, neutral, anti-vaccination). Further, we performed in-depth analysis of the data, exploring the popularity of different vaccines, trending hashtags, topics and presence of offensiveness in the tweets. We studied the data for individual types of tweets and temporal changes in stance towards vaccine. We benchmarked the ArCovidVac dataset using transformer architectures for informativeness, content types, and stance detection.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.