Papers
Topics
Authors
Recent
Search
2000 character limit reached

Masked Faces with Faced Masks

Published 17 Jan 2022 in cs.CV and cs.AI | (2201.06427v2)

Abstract: Modern face recognition systems (FRS) still fall short when the subjects are wearing facial masks, a common theme in the age of respiratory pandemics. An intuitive partial remedy is to add a mask detector to flag any masked faces so that the FRS can act accordingly for those low-confidence masked faces. In this work, we set out to investigate the potential vulnerability of such FRS equipped with a mask detector, on large-scale masked faces, which might trigger a serious risk, e.g., letting a suspect evade the FRS where both facial identity and mask are undetected. As existing face recognizers and mask detectors have high performance in their respective tasks, it is significantly challenging to simultaneously fool them and preserve the transferability of the attack. We formulate the new task as the generation of realistic & adversarial-faced mask and make three main contributions: First, we study the naive Delanunay-based masking method (DM) to simulate the process of wearing a faced mask that is cropped from a template image, which reveals the main challenges of this new task. Second, we further equip the DM with the adversarial noise attack and propose the adversarial noise Delaunay-based masking method (AdvNoise-DM) that can fool the face recognition and mask detection effectively but make the face less natural. Third, we propose the adversarial filtering Delaunay-based masking method denoted as MF2M by employing the adversarial filtering for AdvNoise-DM and obtain more natural faces. With the above efforts, the final version not only leads to significant performance deterioration of the state-of-the-art (SOTA) deep learning-based FRS, but also remains undetected by the SOTA facial mask detector, thus successfully fooling both systems at the same time.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.