Papers
Topics
Authors
Recent
2000 character limit reached

Model Aggregation for Risk Evaluation and Robust Optimization

Published 17 Jan 2022 in q-fin.RM | (2201.06370v4)

Abstract: We introduce a new approach for prudent risk evaluation based on stochastic dominance, which will be called the model aggregation (MA) approach. In contrast to the classic worst-case risk (WR) approach, the MA approach produces not only a robust value of risk evaluation but also a robust distributional model, independent of any specific risk measure. The MA risk evaluation can be computed through explicit formulas in the lattice theory of stochastic dominance, and under some standard assumptions, the MA robust optimization admits a convex-program reformulation. The MA approach for Wasserstein and mean-variance uncertainty sets admits explicit formulas for the obtained robust models. Via an equivalence property between the MA and the WR approaches, new axiomatic characterizations are obtained for the Value-at-Risk (VaR) and the Expected Shortfall (ES, also known as CVaR). The new approach is illustrated with various risk measures and examples from portfolio optimization.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.