Papers
Topics
Authors
Recent
2000 character limit reached

Temporal Relation Extraction with a Graph-Based Deep Biaffine Attention Model

Published 16 Jan 2022 in cs.CL and cs.LG | (2201.06125v1)

Abstract: Temporal information extraction plays a critical role in natural language understanding. Previous systems have incorporated advanced neural LLMs and have successfully enhanced the accuracy of temporal information extraction tasks. However, these systems have two major shortcomings. First, they fail to make use of the two-sided nature of temporal relations in prediction. Second, they involve non-parallelizable pipelines in inference process that bring little performance gain. To this end, we propose a novel temporal information extraction model based on deep biaffine attention to extract temporal relationships between events in unstructured text efficiently and accurately. Our model is performant because we perform relation extraction tasks directly instead of considering event annotation as a prerequisite of relation extraction. Moreover, our architecture uses Multilayer Perceptrons (MLP) with biaffine attention to predict arcs and relation labels separately, improving relation detecting accuracy by exploiting the two-sided nature of temporal relationships. We experimentally demonstrate that our model achieves state-of-the-art performance in temporal relation extraction.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.