A phase-space discontinuous Galerkin approximation for the radiative transfer equation in slab geometry
Abstract: We derive and analyze a symmetric interior penalty discontinuous Galerkin scheme for the approximation of the second-order form of the radiative transfer equation in slab geometry. Using appropriate trace lemmas, the analysis can be carried out as for more standard elliptic problems. Supporting examples show the accuracy and stability of the method also numerically, for different polynomial degrees. For discretization, we employ quad-tree grids, which allow for local refinement in phase-space, and we show exemplary that adaptive methods can efficiently approximate discontinuous solutions. We investigate the behavior of hierarchical error estimators and error estimators based on local averaging.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.