Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust uncertainty estimates with out-of-distribution pseudo-inputs training (2201.05890v1)

Published 15 Jan 2022 in cs.LG and stat.ML

Abstract: Probabilistic models often use neural networks to control their predictive uncertainty. However, when making out-of-distribution (OOD)} predictions, the often-uncontrollable extrapolation properties of neural networks yield poor uncertainty predictions. Such models then don't know what they don't know, which directly limits their robustness w.r.t unexpected inputs. To counter this, we propose to explicitly train the uncertainty predictor where we are not given data to make it reliable. As one cannot train without data, we provide mechanisms for generating pseudo-inputs in informative low-density regions of the input space, and show how to leverage these in a practical Bayesian framework that casts a prior distribution over the model uncertainty. With a holistic evaluation, we demonstrate that this yields robust and interpretable predictions of uncertainty while retaining state-of-the-art performance on diverse tasks such as regression and generative modelling

Citations (1)

Summary

We haven't generated a summary for this paper yet.