Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic decoupled representation learning for remote sensing image change detection (2201.05778v1)

Published 15 Jan 2022 in cs.CV

Abstract: Contemporary transfer learning-based methods to alleviate the data insufficiency in change detection (CD) are mainly based on ImageNet pre-training. Self-supervised learning (SSL) has recently been introduced to remote sensing (RS) for learning in-domain representations. Here, we propose a semantic decoupled representation learning for RS image CD. Typically, the object of interest (e.g., building) is relatively small compared to the vast background. Different from existing methods expressing an image into one representation vector that may be dominated by irrelevant land-covers, we disentangle representations of different semantic regions by leveraging the semantic mask. We additionally force the model to distinguish different semantic representations, which benefits the recognition of objects of interest in the downstream CD task. We construct a dataset of bitemporal images with semantic masks in an effortless manner for pre-training. Experiments on two CD datasets show our model outperforms ImageNet pre-training, in-domain supervised pre-training, and several recent SSL methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.