Papers
Topics
Authors
Recent
2000 character limit reached

RecoMed: A Knowledge-Aware Recommender System for Hypertension Medications

Published 9 Jan 2022 in cs.IR and cs.LG | (2201.05461v2)

Abstract: Background and Objective High medicine diversity has always been a significant challenge for prescription, causing confusion or doubt in physicians' decision-making process. This paper aims to develop a medicine recommender system called RecoMed to aid the physician in the prescription process of hypertension by providing information about what medications have been prescribed by other doctors and figuring out what other medicines can be recommended in addition to the one in question. Methods There are two steps to the developed method: First, association rule mining algorithms are employed to find medicine association rules. The second step entails graph mining and clustering to present an enriched recommendation via ATC code, which itself comprises several steps. First, the initial graph is constructed from historical prescription data. Then, data pruning is performed in the second step, after which the medicines with a high repetition rate are removed at the discretion of a general medical practitioner. Next, the medicines are matched to a well-known medicine classification system called the ATC code to provide an enriched recommendation. And finally, the DBSCAN and Louvain algorithms cluster medicines in the final step. Results A list of recommended medicines is provided as the system's output, and physicians can choose one or more of the medicines based on the patient's clinical symptoms. Only the medicines of class 2, related to high blood pressure medications, are used to assess the system's performance. The results obtained from this system have been reviewed and confirmed by an expert in this field.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.