Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Labeling of Human Action For Visually Impaired And Blind People Scene Interaction

Published 12 Jan 2022 in cs.CV | (2201.04706v1)

Abstract: The aim of this work is to contribute to the development of a tactile device for visually impaired and blind persons in order to let them to understand actions of the surrounding people and to interact with them. First, based on the state-of-the-art methods of human action recognition from RGB-D sequences, we use the skeleton information provided by Kinect, with the disentangled and unified multi-scale Graph Convolutional (MS-G3D) model to recognize the performed actions. We tested this model on real scenes and found some of constraints and limitations. Next, we apply a fusion between skeleton modality with MS-G3D and depth modality with CNN in order to bypass the discussed limitations. Third, the recognized actions are labeled semantically and will be mapped into an output device perceivable by the touch sense.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.