Papers
Topics
Authors
Recent
2000 character limit reached

CompanyName2Vec: Company Entity Matching Based on Job Ads

Published 12 Jan 2022 in cs.SI, cs.DB, and cs.IR | (2201.04687v1)

Abstract: Entity Matching is an essential part of all real-world systems that take in structured and unstructured data coming from different sources. Typically no common key is available for connecting records. Massive data cleaning and integration processes require completion before any data analytics, or further processing can be performed. Although record linkage is frequently regarded as a somewhat tedious but necessary step, it reveals valuable insights, supports data visualization, and guides further analytic approaches to the data. Here, we focus on organization entity matching. We introduce CompanyName2Vec, a novel algorithm to solve company entity matching (CEM) using a neural network model to learn company name semantics from a job ad corpus, without relying on any information on the matched company besides its name. Based on a real-world data, we show that CompanyName2Vec outperforms other evaluated methods and solves the CEM challenge with an average success rate of 89.3%.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.