Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CompanyName2Vec: Company Entity Matching Based on Job Ads (2201.04687v1)

Published 12 Jan 2022 in cs.SI, cs.DB, and cs.IR

Abstract: Entity Matching is an essential part of all real-world systems that take in structured and unstructured data coming from different sources. Typically no common key is available for connecting records. Massive data cleaning and integration processes require completion before any data analytics, or further processing can be performed. Although record linkage is frequently regarded as a somewhat tedious but necessary step, it reveals valuable insights, supports data visualization, and guides further analytic approaches to the data. Here, we focus on organization entity matching. We introduce CompanyName2Vec, a novel algorithm to solve company entity matching (CEM) using a neural network model to learn company name semantics from a job ad corpus, without relying on any information on the matched company besides its name. Based on a real-world data, we show that CompanyName2Vec outperforms other evaluated methods and solves the CEM challenge with an average success rate of 89.3%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ran Ziv (12 papers)
  2. Ilan Gronau (5 papers)
  3. Michael Fire (37 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.