Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 29 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Riemannian Geometry and Molecular Surfaces I: Spectrum of the Laplacian (2201.04230v1)

Published 10 Jan 2022 in q-bio.QM and math.DG

Abstract: Ligand-based virtual screening aims to reduce the cost and duration of drug discovery campaigns. Shape similarity can be used to screen large databases, with the goal of predicting potential new hits by comparing to molecules with known favourable properties. This paper presents the theory underpinning RGMolSA, a new alignment-free and mesh-free surface-based molecular shape descriptor derived from the mathematical theory of Riemannian geometry. The treatment of a molecule as a series of intersecting spheres allows the description of its surface geometry using the Riemannian metric, obtained by considering the spectrum of the Laplacian. This gives a simple vector descriptor constructed of the weighted surface area and eight non-zero eigenvalues, which capture the surface shape. We demonstrate the potential of our method by considering a series of PDE5 inhibitors that are known to have similar shape as an initial test case. RGMolSA displays promise when compared to existing shape descriptors and in its capability to handle different molecular conformers. The code and data used to produce the results are available via GitHub: https://github.com/RPirie96/RGMolSA.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube