Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Robust Policies for Generalized Debris Capture with an Automated Tether-Net System (2201.04180v1)

Published 11 Jan 2022 in cs.RO, cs.AI, cs.LG, and math.OC

Abstract: Tether-net launched from a chaser spacecraft provides a promising method to capture and dispose of large space debris in orbit. This tether-net system is subject to several sources of uncertainty in sensing and actuation that affect the performance of its net launch and closing control. Earlier reliability-based optimization approaches to design control actions however remain challenging and computationally prohibitive to generalize over varying launch scenarios and target (debris) state relative to the chaser. To search for a general and reliable control policy, this paper presents a reinforcement learning framework that integrates a proximal policy optimization (PPO2) approach with net dynamics simulations. The latter allows evaluating the episodes of net-based target capture, and estimate the capture quality index that serves as the reward feedback to PPO2. Here, the learned policy is designed to model the timing of the net closing action based on the state of the moving net and the target, under any given launch scenario. A stochastic state transition model is considered in order to incorporate synthetic uncertainties in state estimation and launch actuation. Along with notable reward improvement during training, the trained policy demonstrates capture performance (over a wide range of launch/target scenarios) that is close to that obtained with reliability-based optimization run over an individual scenario.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.