Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A generalization of the Moreau-Yosida regularization (2201.04175v4)

Published 11 Jan 2022 in math.FA and math.AP

Abstract: In many applications, one deals with nonsmooth functions, e.g., in nonsmooth dynamical systems, nonsmooth mechanics, or nonsmooth optimization. In order to establish theoretical results, it is often beneficial to regularize the nonsmooth functions in an intermediate step. In this work, we investigate the properties of a generalization of the Moreau-Yosida regularization on a normed space where we replace the quadratic kernel in the infimal convolution with a more general function. More precisely, for a function $f:X \rightarrow (-\infty,+\infty]$ defined on a normed space $(X,\Vert \cdot \Vert)$ and given parameters $p>1$ and $\varepsilon>0$, we investigate the properties of the generalized Moreau-Yosida regularization given by \begin{align*} f_\varepsilon(u)=\inf_{v\in X}\left\lbrace \frac{1}{p\varepsilon} \Vert u-v\Vertp+f(v)\right\rbrace \quad ,u\in X. \end{align*} We show that the generalized Moreau-Yosida regularization satisfies the same properties as in the classical case for $p=2$, provided that $X$ is not a Hilbert space. We further establish a convergence result in the sense of Mosco-convergence as the regularization parameter $\varepsilon$ tends to zero.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.