On Planar Holomorphic Systems (2201.04159v1)
Abstract: Planar holomorphic systems $\dot{x}=u(x,y)$, $\dot{y}=v(x,y)$ are those that $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$ for some holomorphic function $f(z)$. They have important dynamical properties, highlighting, for example, the fact that they do not have limit cycles and that center-focus problem is trivial. In particular, the hypothesis that a polynomial system is holomorphic reduces the number of parameters of the system. Although a polynomial system of degree $n$ depends on $n2 +3n+2$ parameters, a polynomial holomorphic depends only on $2n + 2$ parameters. In this work, in addition to making a general overview of the theory of holomorphic systems, we classify all the possible global phase portraits, on the Poincar\'{e} disk, of systems $\dot{z}=f(z)$ and $\dot{z}=1/f(z)$, where $f(z)$ is a polynomial of degree $2$, $3$ and $4$ in the variable $z\in \mathbb{C}$. We also classify all the possible global phase portraits of Moebius systems $\dot{z}=\frac{Az+B}{Cz+D}$, where $A,B,C,D\in\mathbb{C}, AD-BC\neq0$. Finally, we obtain explicit expressions of first integrals of holomorphic systems and of conjugated holomorphic systems, which have important applications in the study of fluid dynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.