Papers
Topics
Authors
Recent
2000 character limit reached

Spiked eigenvalues of high-dimensional sample autocovariance matrices: CLT and applications

Published 10 Jan 2022 in math.ST, math.PR, and stat.TH | (2201.03181v2)

Abstract: High-dimensional autocovariance matrices play an important role in dimension reduction for high-dimensional time series. In this article, we establish the central limit theorem (CLT) for spiked eigenvalues of high-dimensional sample autocovariance matrices, which are developed under general conditions. The spiked eigenvalues are allowed to go to infinity in a flexible way without restrictions in divergence order. Moreover, the number of spiked eigenvalues and the time lag of the autocovariance matrix under this study could be either fixed or tending to infinity when the dimension p and the time length T go to infinity together. As a further statistical application, a novel autocovariance test is proposed to detect the equivalence of spiked eigenvalues for two high-dimensional time series. Various simulation studies are illustrated to justify the theoretical findings. Furthermore, a hierarchical clustering approach based on the autocovariance test is constructed and applied to clustering mortality data from multiple countries.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.