Papers
Topics
Authors
Recent
2000 character limit reached

Quantifying Gender Bias in Consumer Culture

Published 10 Jan 2022 in cs.CL | (2201.03173v1)

Abstract: Cultural items like songs have an important impact in creating and reinforcing stereotypes, biases, and discrimination. But the actual nature of such items is often less transparent. Take songs, for example. Are lyrics biased against women? And how have any such biases changed over time? Natural language processing of a quarter of a million songs over 50 years quantifies misogyny. Women are less likely to be associated with desirable traits (i.e., competence), and while this bias has decreased, it persists. Ancillary analyses further suggest that song lyrics may help drive shifts in societal stereotypes towards women, and that lyrical shifts are driven by male artists (as female artists were less biased to begin with). Overall, these results shed light on cultural evolution, subtle measures of bias and discrimination, and how natural language processing and machine learning can provide deeper insight into stereotypes and cultural change.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.