Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Gender Bias in Consumer Culture (2201.03173v1)

Published 10 Jan 2022 in cs.CL

Abstract: Cultural items like songs have an important impact in creating and reinforcing stereotypes, biases, and discrimination. But the actual nature of such items is often less transparent. Take songs, for example. Are lyrics biased against women? And how have any such biases changed over time? Natural language processing of a quarter of a million songs over 50 years quantifies misogyny. Women are less likely to be associated with desirable traits (i.e., competence), and while this bias has decreased, it persists. Ancillary analyses further suggest that song lyrics may help drive shifts in societal stereotypes towards women, and that lyrical shifts are driven by male artists (as female artists were less biased to begin with). Overall, these results shed light on cultural evolution, subtle measures of bias and discrimination, and how natural language processing and machine learning can provide deeper insight into stereotypes and cultural change.

Citations (7)

Summary

We haven't generated a summary for this paper yet.