Papers
Topics
Authors
Recent
2000 character limit reached

Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed (2201.02682v1)

Published 7 Jan 2022 in math.AP

Abstract: We study the existence and stability of standing waves associated to the Cauchy problem for the nonlinear Schr\"odinger equation (NLS) with a critical rotational speed and an axially symmetric harmonic potential. This equation arises as an effective model describing the attractive Bose-Einstein condensation in a magnetic trap rotating with an angular velocity. By viewing the equation as NLS with a constant magnetic field and with (or without) a partial harmonic confinement, we establish the existence and orbital stability of prescribed mass standing waves for the equation with mass-subcritical, mass-critical, and mass-supercritical nonlinearities. Our result extends a recent work of [Bellazzini-Boussa\"id-Jeanjean-Visciglia, Comm. Math. Phys. 353 (2017), no. 1, 229-251], where the existence and stability of standing waves for the supercritical NLS with a partial confinement were established.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.