Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Iwasawa theory of fine Selmer groups over global fields (2201.01751v2)

Published 5 Jan 2022 in math.NT

Abstract: The $p\infty$-fine Selmer group of an elliptic curve $E$ over a number field $F$ is a subgroup of the classical $p\infty$-Selmer group of $E$ over $F$. Fine Selmer group is closely related to the 1st and 2nd Iwasawa cohomology groups. Coates-Sujatha observed that the structure of the fine Selmer group of $E$ over a $p$-adic Lie extension of a number field is intricately related to some deep questions in classical Iwasawa theory; for example, Iwasawa's classical $\mu$-invariant vanishing conjecture. In this article, we study the properties of the $p\infty$-fine Selmer group of an elliptic curve over certain $p$-adic Lie extensions of a number field. We also define and discuss $p\infty$-fine Selmer group of an elliptic curve over function fields of characteristic $p$ and also of characteristic $\ell \neq p.$ We relate our study with a conjecture of Jannsen.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.