Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
12 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
37 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adaptive Template Enhancement for Improved Person Recognition using Small Datasets (2201.01218v1)

Published 3 Jan 2022 in eess.SP and cs.LG

Abstract: A novel instance-based method for the classification of electroencephalography (EEG) signals is presented and evaluated in this paper. The non-stationary nature of the EEG signals, coupled with the demanding task of pattern recognition with limited training data as well as the potentially noisy signal acquisition conditions, have motivated the work reported in this study. The proposed adaptive template enhancement mechanism transforms the feature-level instances by treating each feature dimension separately, hence resulting in improved class separation and better query-class matching. The proposed new instance-based learning algorithm is compared with a few related algorithms in a number of scenarios. A clinical grade 64-electrode EEG database, as well as a low-quality (high-noise level) EEG database obtained with a low-cost system using a single dry sensor have been used for evaluations in biometric person recognition. The proposed approach demonstrates significantly improved classification accuracy in both identification and verification scenarios. In particular, this new method is seen to provide a good classification performance for noisy EEG data, indicating its potential suitability for a wide range of applications.

Summary

We haven't generated a summary for this paper yet.