Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Parity Property of Hexagonal Sliding Puzzles (2201.00919v1)

Published 4 Jan 2022 in math.CO and math.AT

Abstract: We study the puzzle graphs of hexagonal sliding puzzles of various shapes and with various numbers of holes. The puzzle graph is a combinatorial model which captures the solvability and the complexity of sequential mechanical puzzles. Questions relating to the puzzle graph have been previously studied and resolved for the 15 Puzzle which is the most famous, and unsolvable, square sliding puzzle of all time. It is known that for square puzzles such as the 15 Puzzle, solvability depends on a parity property that splits the puzzle graph into two components. In the case of hexagonal sliding puzzles, we get more interesting parity properties that depend on the shape of the boards and on the missing tiles or holes on the board. We show that for large-enough hexagonal, triangular, or parallelogram-shaped boards with hexagonal tiles, all puzzles with three or more holes are solvable. For puzzles with two or more holes, we give a solvability criterion involving both a parity property and the placement of tiles in tight corners of the board. The puzzle graph is a discrete model for the configuration space of hard tiles (hexagons or squares) moving on different tessellation-based domains. Understanding the combinatorics of the puzzle graph could lead to understanding some aspects of the topology of these configuration spaces.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.