Papers
Topics
Authors
Recent
2000 character limit reached

Topological quantum computation is hyperbolic

Published 3 Jan 2022 in quant-ph, cs.CC, math.GT, and math.QA | (2201.00857v4)

Abstract: We show that a topological quantum computer based on the evaluation of a Witten-Reshetikhin-Turaev TQFT invariant of knots can always be arranged so that the knot diagrams with which one computes are diagrams of hyperbolic knots. The diagrams can even be arranged to have additional nice properties, such as being alternating with minimal crossing number. Moreover, the reduction is polynomially uniform in the self-braiding exponent of the coloring object. Various complexity-theoretic hardness results regarding the calculation of quantum invariants of knots follow as corollaries. In particular, we argue that the hyperbolic geometry of knots is unlikely to be useful for topological quantum computation.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.