Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Mixed-Integer Programming Approach to Training Dense Neural Networks

Published 3 Jan 2022 in cs.LG and math.OC | (2201.00723v2)

Abstract: Artificial Neural Networks (ANNs) are prevalent machine learning models that are applied across various real-world classification tasks. However, training ANNs is time-consuming and the resulting models take a lot of memory to deploy. In order to train more parsimonious ANNs, we propose a novel mixed-integer programming (MIP) formulation for training fully-connected ANNs. Our formulations can account for both binary and rectified linear unit (ReLU) activations, and for the use of a log-likelihood loss. We present numerical experiments comparing our MIP-based methods against existing approaches and show that we are able to achieve competitive out-of-sample performance with more parsimonious models.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.