Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compression-Resistant Backdoor Attack against Deep Neural Networks (2201.00672v1)

Published 3 Jan 2022 in cs.CV

Abstract: In recent years, many backdoor attacks based on training data poisoning have been proposed. However, in practice, those backdoor attacks are vulnerable to image compressions. When backdoor instances are compressed, the feature of specific backdoor trigger will be destroyed, which could result in the backdoor attack performance deteriorating. In this paper, we propose a compression-resistant backdoor attack based on feature consistency training. To the best of our knowledge, this is the first backdoor attack that is robust to image compressions. First, both backdoor images and their compressed versions are input into the deep neural network (DNN) for training. Then, the feature of each image is extracted by internal layers of the DNN. Next, the feature difference between backdoor images and their compressed versions are minimized. As a result, the DNN treats the feature of compressed images as the feature of backdoor images in feature space. After training, the backdoor attack against DNN is robust to image compression. Furthermore, we consider three different image compressions (i.e., JPEG, JPEG2000, WEBP) in feature consistency training, so that the backdoor attack is robust to multiple image compression algorithms. Experimental results demonstrate the effectiveness and robustness of the proposed backdoor attack. When the backdoor instances are compressed, the attack success rate of common backdoor attack is lower than 10%, while the attack success rate of our compression-resistant backdoor is greater than 97%. The compression-resistant attack is still robust even when the backdoor images are compressed with low compression quality. In addition, extensive experiments have demonstrated that, our compression-resistant backdoor attack has the generalization ability to resist image compression which is not used in the training process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Mingfu Xue (19 papers)
  2. Xin Wang (1307 papers)
  3. Shichang Sun (6 papers)
  4. Yushu Zhang (43 papers)
  5. Jian Wang (967 papers)
  6. Weiqiang Liu (18 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com