Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback-efficient Active Preference Learning for Socially Aware Robot Navigation (2201.00469v4)

Published 3 Jan 2022 in cs.RO

Abstract: Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While existing learning-based methods have achieved better performance than the preceding model-based ones, they still have drawbacks: reinforcement learning depends on the handcrafted reward that is unlikely to effectively quantify broad social compliance, and can lead to reward exploitation problems; meanwhile, inverse reinforcement learning suffers from the need for expensive human demonstrations. In this paper, we propose a feedback-efficient active preference learning approach, FAPL, that distills human comfort and expectation into a reward model to guide the robot agent to explore latent aspects of social compliance. We further introduce hybrid experience learning to improve the efficiency of human feedback and samples, and evaluate benefits of robot behaviors learned from FAPL through extensive simulation experiments and a user study (N=10) employing a physical robot to navigate with human subjects in real-world scenarios. Source code and experiment videos for this work are available at:https://sites.google.com/view/san-fapl.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com