Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Image Inpainting (2201.00177v1)

Published 1 Jan 2022 in cs.CV

Abstract: Image inpainting methods have shown significant improvements by using deep neural networks recently. However, many of these techniques often create distorted structures or blurry textures inconsistent with surrounding areas. The problem is rooted in the encoder layers' ineffectiveness in building a complete and faithful embedding of the missing regions. To address this problem, two-stage approaches deploy two separate networks for a coarse and fine estimate of the inpainted image. Some approaches utilize handcrafted features like edges or contours to guide the reconstruction process. These methods suffer from huge computational overheads owing to multiple generator networks, limited ability of handcrafted features, and sub-optimal utilization of the information present in the ground truth. Motivated by these observations, we propose a distillation based approach for inpainting, where we provide direct feature level supervision for the encoder layers in an adaptive manner. We deploy cross and self distillation techniques and discuss the need for a dedicated completion-block in encoder to achieve the distillation target. We conduct extensive evaluations on multiple datasets to validate our method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Maitreya Suin (17 papers)
  2. Kuldeep Purohit (21 papers)
  3. A. N. Rajagopalan (32 papers)

Summary

We haven't generated a summary for this paper yet.