Semantic Search for Large Scale Clinical Ontologies
Abstract: Finding concepts in large clinical ontologies can be challenging when queries use different vocabularies. A search algorithm that overcomes this problem is useful in applications such as concept normalisation and ontology matching, where concepts can be referred to in different ways, using different synonyms. In this paper, we present a deep learning based approach to build a semantic search system for large clinical ontologies. We propose a Triplet-BERT model and a method that generates training data directly from the ontologies. The model is evaluated using five real benchmark data sets and the results show that our approach achieves high results on both free text to concept and concept to concept searching tasks, and outperforms all baseline methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.