Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Safety Verification of Stochastic Systems via Barrier Certificates (2112.12709v1)

Published 23 Dec 2021 in eess.SY and cs.SY

Abstract: In this paper, we propose a data-driven approach to formally verify the safety of (potentially) unknown discrete-time continuous-space stochastic systems. The proposed framework is based on a notion of barrier certificates together with data collected from trajectories of unknown systems. We first reformulate the barrier-based safety verification as a robust convex problem (RCP). Solving the acquired RCP is hard in general because not only the state of the system lives in a continuous set, but also and more problematic, the unknown model appears in one of the constraints of RCP. Instead, we leverage a finite number of data, and accordingly, the RCP is casted as a scenario convex problem (SCP). We then relate the optimizer of the SCP to that of the RCP, and consequently, we provide a safety guarantee over the unknown stochastic system with a priori guaranteed confidence. We apply our approach to an unknown room temperature system by collecting sampled data from trajectories of the system and verify formally that temperature of the room lies in a comfort zone for a finite time horizon with a desired confidence.

Citations (25)

Summary

We haven't generated a summary for this paper yet.