Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing MDP Abstractions Using Data with Formal Guarantees (2206.14402v1)

Published 29 Jun 2022 in eess.SY and cs.SY

Abstract: This paper is concerned with a data-driven technique for constructing finite Markov decision processes (MDPs) as finite abstractions of discrete-time stochastic control systems with unknown dynamics while providing formal closeness guarantees. The proposed scheme is based on notions of stochastic bisimulation functions (SBF) to capture the probabilistic distance between state trajectories of an unknown stochastic system and those of finite MDP. In our proposed setting, we first reformulate corresponding conditions of SBF as a robust convex program (RCP). We then propose a scenario convex program (SCP) associated to the original RCP by collecting a finite number of data from trajectories of the system. We ultimately construct an SBF between the data-driven finite MDP and the unknown stochastic system with a given confidence level by establishing a probabilistic relation between optimal values of the SCP and the RCP. We also propose two different approaches for the construction of finite MDPs from data. We illustrate the efficacy of our results over a nonlinear jet engine compressor with unknown dynamics. We construct a data-driven finite MDP as a suitable substitute of the original system to synthesize controllers maintaining the system in a safe set with some probability of satisfaction and a desirable confidence level.

Citations (24)

Summary

We haven't generated a summary for this paper yet.