Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven verification and synthesis of stochastic systems via barrier certificates (2111.10330v2)

Published 19 Nov 2021 in eess.SY and cs.SY

Abstract: In this work, we study verification and synthesis problems for safety specifications over unknown discrete-time stochastic systems. When a model of the system is available, barrier certificates have been successfully applied for ensuring the satisfaction of safety specifications. In this work, we formulate the computation of barrier certificates as a robust convex program (RCP). Solving the acquired RCP is hard in general because the model of the system that appears in one of the constraints of the RCP is unknown. We propose a data-driven approach that replaces the uncountable number of constraints in the RCP with a finite number of constraints by taking finitely many random samples from the trajectories of the system. We thus replace the original RCP with a scenario convex program (SCP) and show how to relate their optimizers. We guarantee that the solution of the SCP is a solution of the RCP with a priori guaranteed confidence when the number of samples is larger than a pre-computed value. This provides a lower bound on the safety probability of the original unknown system together with a controller in the case of synthesis. We also discuss an extension of our verification approach to a case where the associated robust program is non-convex and show how a similar methodology can be applied. Finally, the applicability of our proposed approach is illustrated through three case studies.

Citations (11)

Summary

We haven't generated a summary for this paper yet.