Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

High Dimensional Fluctuations in Liquid Water: Combining Chemical Intuition with Unsupervised Learning (2112.11894v2)

Published 22 Dec 2021 in cond-mat.soft and cond-mat.mtrl-sci

Abstract: The microscopic description of the local structure of water remains an open challenge. Here, we adopt an agnostic approach to understanding water's hydrogen bond network using data harvested from molecular dynamics simulations of an empirical water model. A battery of state-of-the-art unsupervised data-science techniques are used to characterize the free energy landscape of water starting from encoding the water environment using local-atomic descriptors, through dimensionality reduction and finally the use of advanced clustering techniques. Analysis of the free energy at ambient conditions was found to be consistent with a rough single basin and independent of the choice of the water model. We find that the fluctuations of the water network occur in a high-dimensional space which we characterize using a combination of both atomic descriptors and chemical-intuition based coordinates. We demonstrate that a combination of both types of variables are needed in order to adequately capture the complexity of the fluctuations in the hydrogen bond network at different length-scales both at room temperature and also close to the critical point of water. Our results provide a general framework for examining fluctuations in water under different conditions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.