Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A first look at the function space for planar two-loop six-particle Feynman integrals (2112.10605v2)

Published 20 Dec 2021 in hep-th and hep-ph

Abstract: Two-loop corrections to scattering amplitudes are crucial theoretical input for collider physics. Recent years have seen tremendous advances in computing Feynman integrals, scattering amplitudes, and cross sections for five-particle processes. In this paper, we initiate the study of the function space for planar two-loop six-particle processes. We study all genuine six-particle Feynman integrals, and derive the differential equations they satisfy on maximal cuts. Performing a leading singularity analysis in momentum space, and in Baikov representation, we find an integral basis that puts the differential equations into canonical form. The corresponding differential equation in the eight independent kinematic variables is derived with the finite-field reconstruction method and the symbol letters are identified. We identify the dual conformally invariant hexagon alphabet known from maximally supersymmetric Yang-Mills theory as a subset of our alphabet. This paper constitutes an important step in the analytic calculation of planar two-loop six-particle Feynman integrals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.