Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Memorization from the Perspective of Optimization via Efficient Influence Estimation (2112.08798v1)

Published 16 Dec 2021 in cs.LG

Abstract: Over-parameterized deep neural networks are able to achieve excellent training accuracy while maintaining a small generalization error. It has also been found that they are able to fit arbitrary labels, and this behaviour is referred to as the phenomenon of memorization. In this work, we study the phenomenon of memorization with turn-over dropout, an efficient method to estimate influence and memorization, for data with true labels (real data) and data with random labels (random data). Our main findings are: (i) For both real data and random data, the optimization of easy examples (e.g., real data) and difficult examples (e.g., random data) are conducted by the network simultaneously, with easy ones at a higher speed; (ii) For real data, a correct difficult example in the training dataset is more informative than an easy one. By showing the existence of memorization on random data and real data, we highlight the consistency between them regarding optimization and we emphasize the implication of memorization during optimization.

Citations (7)

Summary

We haven't generated a summary for this paper yet.