Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Hierarchical Domain Adaptation for Pretrained Language Models (2112.08786v2)

Published 16 Dec 2021 in cs.CL

Abstract: The remarkable success of LLMs has been driven by dense models trained on massive unlabeled, unstructured corpora. These corpora typically contain text from diverse, heterogeneous sources, but information about the source of the text is rarely used during training. Transferring their knowledge to a target domain is typically done by continuing training in-domain. In this paper, we introduce a method to permit domain adaptation to many diverse domains using a computationally efficient adapter approach. Our method is based on the observation that textual domains are partially overlapping, and we represent domains as a hierarchical tree structure where each node in the tree is associated with a set of adapter weights. When combined with a frozen pretrained LLM, this approach enables parameter sharing among related domains, while avoiding negative interference between unrelated ones. Experimental results with GPT-2 and a large fraction of the 100 most represented websites in C4 show across-the-board improvements in-domain. We additionally provide an inference time algorithm for a held-out domain and show that averaging over multiple paths through the tree enables further gains in generalization, while adding only a marginal cost to inference.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alexandra Chronopoulou (24 papers)
  2. Matthew E. Peters (27 papers)
  3. Jesse Dodge (45 papers)
Citations (41)

Summary

We haven't generated a summary for this paper yet.