Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generative Adversarial Networks for Data Generation in Structural Health Monitoring

Published 7 Dec 2021 in cs.LG, cs.AI, and stat.AP | (2112.08196v2)

Abstract: Structural Health Monitoring (SHM) has been continuously benefiting from the advancements in the field of data science. Various types of AI methods have been utilized for the assessment and evaluation of civil structures. In AI, Machine Learning (ML) and Deep Learning (DL) algorithms require plenty of datasets to train; particularly, the more data DL models are trained with, the better output it yields. Yet, in SHM applications, collecting data from civil structures through sensors is expensive and obtaining useful data (damage associated data) is challenging. In this paper, 1-D Wasserstein loss Deep Convolutional Generative Adversarial Networks using Gradient Penalty (1-D WDCGAN-GP) is utilized to generate damage associated vibration datasets that are similar to the input. For the purpose of vibration-based damage diagnostics, a 1-D Deep Convolutional Neural Network (1-D DCNN) is built, trained, and tested on both real and generated datasets. The classification results from the 1-D DCNN on both datasets resulted to be very similar to each other. The presented work in this paper shows that for the cases of insufficient data in DL or ML-based damage diagnostics, 1-D WDCGAN-GP can successfully generate data for the model to be trained on. Keywords: 1-D Generative Adversarial Networks (GAN), Deep Convolutional Generative Adversarial Networks (DCGAN), Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP), 1-D Convolutional Neural Networks (CNN), Structural Health Monitoring (SHM), Structural Damage Diagnostics, Structural Damage Detection

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.