Papers
Topics
Authors
Recent
Search
2000 character limit reached

Funnels: Exact maximum likelihood with dimensionality reduction

Published 15 Dec 2021 in cs.LG and stat.ML | (2112.08069v1)

Abstract: Normalizing flows are diffeomorphic, typically dimension-preserving, models trained using the likelihood of the model. We use the SurVAE framework to construct dimension reducing surjective flows via a new layer, known as the funnel. We demonstrate its efficacy on a variety of datasets, and show it improves upon or matches the performance of existing flows while having a reduced latent space size. The funnel layer can be constructed from a wide range of transformations including restricted convolution and feed forward layers.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.